On Orbit Closures of Symmetric Subgroups in Ag Varieties

نویسنده

  • Michel Brion
چکیده

Introduction Let G be a connected reductive group over an algebraically closed eld k; let B G be a Borel subgroup and K G a closed subgroup. Assume that K is a spherical subgroup of G, that is, the number of K-orbits in the ag variety G=B is nite; equivalently, the set KnG=B of (K; B)-double cosets in G is nite. Then the following problems arise naturally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Orbit Closures of Spherical Subgroups in Flag Varieties

Let F be the ag variety of a complex semi-simple group G, let H be an algebraic subgroup of G acting on F with nitely many orbits, and let V be an H-orbit closure in F. Expanding the cohomology class of V in the basis of Schubert classes deenes a union V 0 of Schubert varieties in F with positive multiplicities. If G is simply-laced, we show that these multiplicites are equal to the same power ...

متن کامل

On Orbit Closures of Symmetric Subgroups in Flag Varieties

We study K-orbits in G/P where G is a complex connected reductive group, P ⊆ G is a parabolic subgroup, and K ⊆ G is the fixed point subgroup of an involutive automorphism θ. Generalizing work of Springer, we parametrize the (finite) orbit set K\G/P and we determine the isotropy groups. As a consequence, we describe the closed (resp. affine) orbits in terms of θ-stable (resp. θ-split) parabolic...

متن کامل

Self–Dual Algebraic Varieties and Nilpotent Orbits

We give a construction of nonsmooth self-dual projective algebraic varieties. They appear as certain projectivized orbit closures for some linear actions of reductive algebraic groups. Applying this construction to adjoint representations, we obtain geometric characterization of distinguished nilpotent elements of semisimple Lie algebras [BC1], [BC2] (i.e., nilpotent elements whose centralizer ...

متن کامل

Computing Orbits of Minimal Parabolic k-subgroups Acting on Symmetric k-varieties

The orbits of a minimal parabolic k-subgroup acting on a symmetric k-variety are essential to the study of symmetric k-varieties and their representations. This paper gives an algorithm to compute these orbits and most of the combinatorial structure of the orbit decomposition. There are several ways to describe these orbits, see for example [22, 28, 35]. Fundamental in all these descriptions ar...

متن کامل

Automorphisms, Root Systems, and Compactifications of Homogeneous Varieties

Let G be a complex semisimple group and let H ⊆ G be the group of fixed points of an involutive automorphism of G. Then X = G/H is called a symmetric variety. In [CP], De Concini and Procesi have constructed an equivariant compactification X which has a number of remarkable properties, some of them being: i) The boundary is the union of divisors D1, . . . , Dr. ii) There are exactly 2 orbits. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998